

Профессор Баксанский Олег Евгеньевич Институт философии РАН

Конвергенция: естественнонаучные методы познания в социально-гуманитарной сфере

НБИКС – новая парадигма развития науки будущего

«.....Пространство конвергентных технологий приобретает еще одно измерение – социально - гуманитарное, а конвергентное единство Нано -, Био -, Инфо -, Когнитивных технологий дополняется Социально-гуманитарными технологиями, становясь уже НБИКС - технологиями. Это расширение конвергентных наук в далекую, казалось бы, от них гуманитарную область стало логическим итогом первого этапа развития НБИКС»

ПОЗНАНИЕ

Естественнонаучное познание

- 1. Носит объективный характер
- 2. Предмет познания типичен
- 3. Историчность не обязательна
- 4. Создает только знание
- 5. Естествоиспытатель стремится быть сторонним наблюдателем
- 6. Опирается на язык терминов и чисел

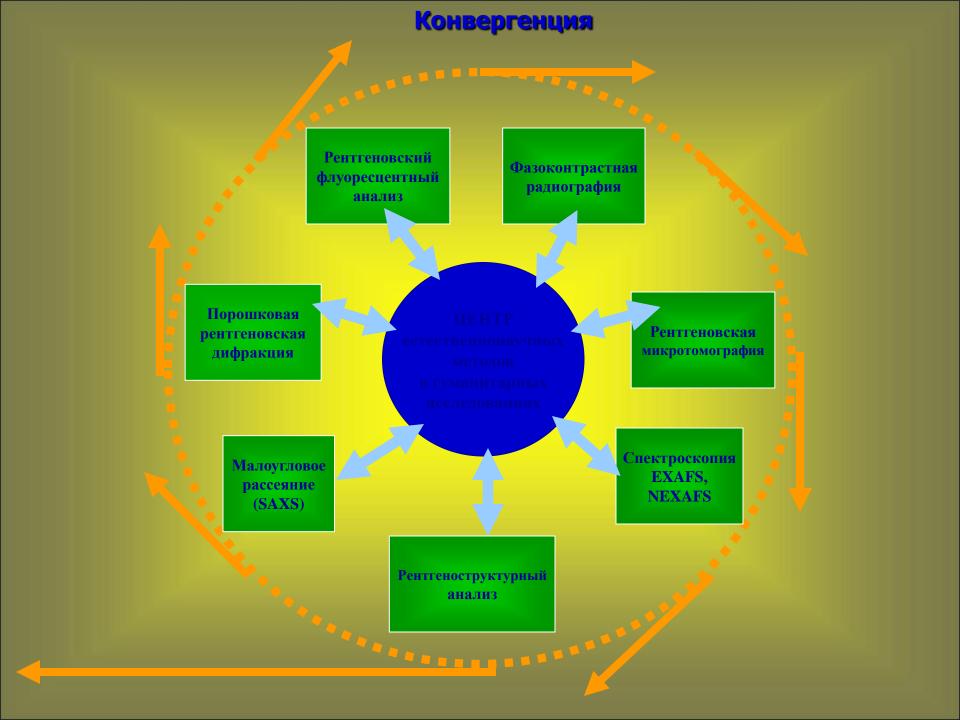
Гуманитарное познание

- 1. Носит субъективный характер
- 2. Предмет познания индивидуален
- 3. Всегда исторично
- 4. Создает знание, а также мнение и оценку познаваемого предмета
- 5. Гуманитарий неизбежно участвует в исследуемом процессе
- 6. Опирается на язык образов

Основные направления исследований

- Идентификация подлинности объектов
- Точная датировка артефактов и материалов
- Химический (включая радиохимический) анализ артефактов и материалов
- Визуальная реконструкция утраченных фрагментов артефактов
- ДНК анализ органических останков
- Компьютерная 3D-реконструкция и визуализация археологических объектов и комплексов
- Обнаружение, анализ и восстановление скрытых изображений

Основные объекты исследований


- Письменные документы, содержащие прямые или косвенные указания на временной период
- Ископаемые стволы деревьев, пригодные для анализа погодичного прироста древесины
- Ископаемые органические останки, содержащие изотоп углерода С¹⁴ (радиоуглеродное датирование археологических объектов)
- Ископаемые органические останки, содержащие генетические материалы для анализа ДНК
- Ископаемые неорганические останки (металлические орудия труда и оружие, керамика и др.)
- Произведения искусства, живописи, архитектуры, ювелирные украшения

Методы исследований

- Рентгеновские исследования, включая синхротронный рентгеновский анализ:
 - Cneктроскопия EXAFS/NEXAFS
 - Рентгеновский флуоресцентный анализ (XRF)
 - Рентгеновская радиография (включая фазовоконтрастную радиографию) (XRR)
 - Рентгеновская топотомография (включая микротомографию) (XR Topotomography, MicroCT)
 - Порошковая рентгеновская дифракция (XRD)
 - Рентгеновское рассеяние (малоугловое, широкоугловое) (SAXS/WAXS)
- Нейтронные исследования:
 - Нейтронная радиография (NR)
 - Нейтронно-активационный анализ (NAA)

Методы исследований

- Микроскопия и спектроскопия:
 - Оптическая микроскопия
 - Растровая электронная микроскопия с элементным микроанализом
 - Атомно-силовая микроскопия
 - Инфракрасная (ИК) микроскопия и спектроскопия
 - Ультразвуковая микроскопия
 - Рамановское рассеяние и спектроскопия
- Математическое моделирование и ІТ-технологии 3Dреконструкций
- Химический и радиохимический (С¹4) анализ
- Анализ ДНК
- Хромотография газовая и жидкостная
- Масспектрометрия
- **мрт, пэт**

сманицарных исслейованиих вслественнонайных метойов в

 5-6 чел
 Лаборатория рентгеновских и синхротронных методов исследования

 3-4 чел
 Лаборатория нейтронного анализа

 3-4 чел
 Лаборатория математического моделирования и 3D реконструкций

 3-4 чел
 Лаборатория физико-химических методов анализа

 3-4 чел
 Лаборатория анализа

 3-4 чел
 Лаборатория анализа

3-4 Учел Лингвистическая лаборатория

4-5

Лаборатория микроскопии

(РЭМ, АСМ, ИКМ, УЗМ, ОМ)

Название оборудования

Bruker PICOFOX

Рентгенофлуоресцентный энергодисперсионный спектрометр с полным внешним отражением предназначен для проведения полного следового анализа методом РФА, например – анализ содержания тяжёлых металлов (хром, мышьяк, свинец) с точностью существенно больше пороговых значений, исследования металлопротеинов, определения стехиометрических соотношений металлов в энзимах, установления биологической функции металлов, измерять следовые элементы при количестве пробы в пределах миллиграмм, проводить быстрый следовой количественный анализ летучей ртути в стеклянных пробах, токсикологических анализ, мониторинг содержания онкологических препаратов в крови, элементный анализ наночастиц, быстрый анализ для контроля загрязнений и др.

Фотография оборудования

Название оборудования

Фотография оборудования

HECUS S3-MICRO

Система мало- и широкоуглового рассеяния рентгеновского излучения применяется для изучения твёрдых образцов, гелей, макромолекулярных растворов, полимеров, тонких плёнок, а также для решения задач биомедицины фармакологии, пищевой промышленности и при контроле качества. Позволяет решать задачи построения моделей биомакромолекул, структура которых неизвестна или известна частично, определения структурных параметров (распределения по размерам, формы) пор в различных веществах, восстановления структуры кластеров в частично упорядоченных системах, определения структурных параметров вкраплений в твёрдой матрице и др.

Название оборудования

Фотография оборудования

Дифрактометр Bruker D8 Advance

Предназначен для решения задач рентгеновской дифрактометрии порошков и поликристаллов методами рентгенофазового анализа (определение качественного состава образца, количественное определение компонентов образца), определения кристаллической структуры исследуемого вещества (прецезионное определение параметров элементарной ячейки, полнопрофильный анализ – метод Ритвельда), определения разметра кристаллитов в области когерентного рассеяния поликристаллического образца, исследование текстуры в поликристаллических материалах.

Название оборудования

Фотография оборудования

Рентгенофлуоресцентный спектрометр Bruker S4 Pioneer

Предназначен для безэталонного многоэлементного анализа порошковых проб, прессованных таблеток, сплавленных дисков различных материалов, жидкостей, минералов, руд, керамики, металлов, стёкол, полимеров, углеводородов, для исследований малых и нестандартных проб, для анализа микропримесей.

Название оборудования

Фотография оборудования

микроскои Helios Электронно-монный растровый

Разрешение:

электронной колонны

@ 15 кВ 0.9 нм @ 1 кВ 1.4 нм

ионной колонны

@ 30 кВ 5 нм

- Энергодисперсионный микроанализ EDXS (разрешение 128 эв).
- Напыление вольфрама, углерода, платины, травление йодом.
- Микроманипулятор Omniprobe.

Атомно-силовые микроскопы Ntegra Prima(NT-MDT) — 4 шт.

ИНТЕГРА Прима — НаноЛаборатория, поддерживающая все основные методики АСМ и СТМ. Может быть сконфигурирована для проведения узкоспециализированных исследований

Установка контактной профилометрии Bruker DektakXT AdvancedSystem

Установка предназначена для контактного измерения профиля поверхности.

Микроскоп Nikon

Ближайшие задачи

Наскальные изображения и стелы: идентификация пигментов, определение их состава, источника сырья

Выявление следов использования металлических орудий при выполнении изображений и определение состава металла

Ближайшие задачи

Ближайшие задачи

Лингвистические исследования

Базы данных. Дешифровка с применением *IT*

Анализ текстов

Анализ речи Психофизиологические факторы, связанные с коммуникативным поведением

Воздействие на психофизиологическую сферу человека

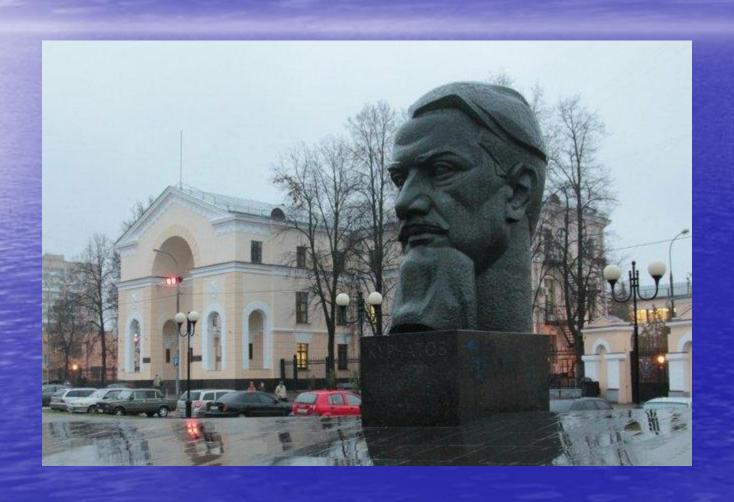
> Новые интерфейсы «человек - внешняя среда»

Микро- и нанороботы

Целевая доставка веществ

Генетическое модифицирование живых структур

Распределённые


информационно-

измерительные системы

Искусственные

органы

Спасибо за внимание!

